

DESIGNING A RELIABLE AND CONVENIENT WAY TO MANAGE CHILDREN'S IMMUNIZATION RECORDS

My Role UX Designer

Responsibilities

Conduct user research, information architecture, visual design of low-fi and high-fi wireframes, prototyping, usability testing and iteration.

^{*}Click <u>here</u> to check the prototype file

^{**}This is a shorter version of the full case study. It does not include detailed steps of the design thinking methodology and is intended for portfolio preview purposes only.

Context: The relevance of having organized records

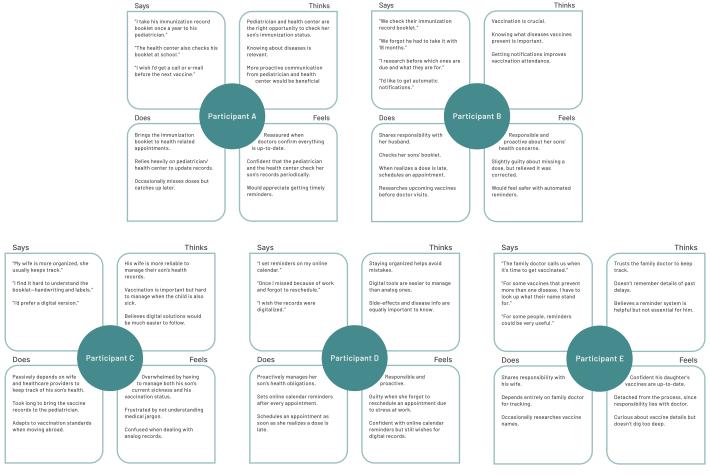
Immunization plays a crucial role in preventing the resurgence of diseases, avoiding outbreaks, reducing spending and demand on public health systems. Incomplete dose records, difficulties in tracking vaccination status and inconvenience, complicate the process for families, leaving both parents and healthcare providers struggling to ensure children remain fully protected.

*Sources

"Why vaccination is important and the safest way to protect yourself" — National Health Service (UK): https://www.nhs.uk/vaccinations/why-vaccination-is-important-and-the-safest-way-to-protect-yourself/nhs.uk

Instituto Butantan – Peres KC: Historical analysis of the Sanitary registration and vaccine registration in Brazil (2021) https://www.scielosp.org/article/csc/2021.v26n11/5509-5522/en/

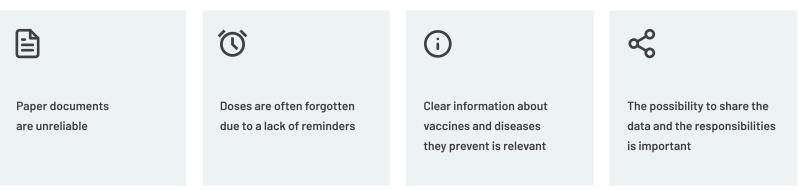
"Parent-level barriers to uptake of childhood vaccination" — Kaufman J et al., BMJ Global Health (2021): https://gh.bmj.com/content/6/9/e006860


RKI - Governance of COVID-19 Vaccine Data in Federations (Germany section: data challenges, missing vaccination status in ~20% of records) https://naohealthobservatory.ca/wp-content/uploads/2022/03/NAO-Rapid-Review-33_EN.pdf naohealthobservatory.ca

Robert Koch Institute (RKI) - Seeber L: Educating parents about the vaccination status of their children (2017) https://edoc.rki.de/handle/176904/2534 edoc Server

RKI - Epidemiologisches Bulletin 4/2023: Vaccination records should be checked... during routine healthy child visits https://www.rki.de/EN/Topics/Infectious-diseases/lmmunisation/STIKO/STIKO-recommendations/Downloads/04_23_english.pdf?__blob=publicationFile&v=3 Robert Koch Institute

Understanding the problem


Qualitative research was conducted through 5 interviews with parents of different demographics focusing on understanding the methods they use and challenges they face while managing their children's immunization records. The questions gave enough room for parents to share their experiences that led to missing doses. The gathered data served as input to understand the problem, build the empathy maps and trace the user journeys.

^{*}Those were the empathy maps generated from the participant's answers

Figuring out opportunities

After the data analysis, it was possible to understand the perspective of the target users, identify pain points and opportunities to make managing the process more convenient, reliable and accessible.

^{*}Those were the key insights learned during the research process

^{*}The user journey maps helped identify pain points from each user group and opportunities

What was learned

The findings revealed common behavior patterns between parents, with some being proactive, while others relying or sharing the responsibility with their trusted healthcare professionals and there were also those feeling overwhelmed. Each group's behavior pattern gave valuable insights about which design features might address their challenges.

PROACTIVE PARENT

Actively monitor vaccination status with partner or by themselves

Get informed before doctor's appointment

Set reminders themselves

DEPENDENT PARENT

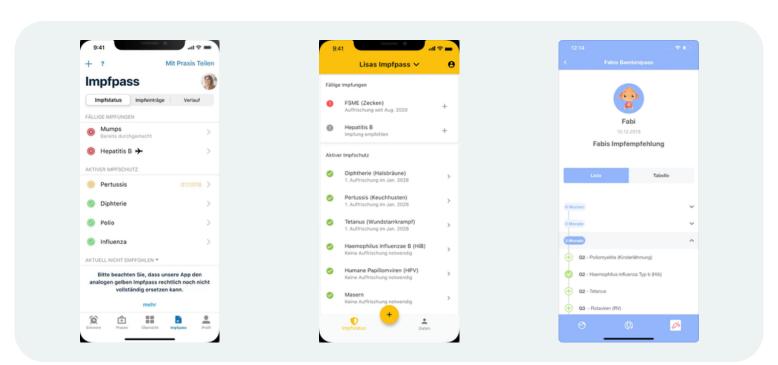
Leave the responsibility for follow-up and reminders solely to the doctor or health professionals

OVERWHELMED PARENT

Rely on their partner and pediatrician

Can't keep track of things accurately themselves

Have difficulty understanding the technical terms


^{*}Common behavior patterns could be sorted into 3 different groups of users

Setting the right direction

After reviewing the collected information about the users, setting goals and creating hypothesis for how a solution might help solving the user problem, it was time to analyze the competitors, their strengths, weaknesses and figure out opportunities.

Auditioning the competition

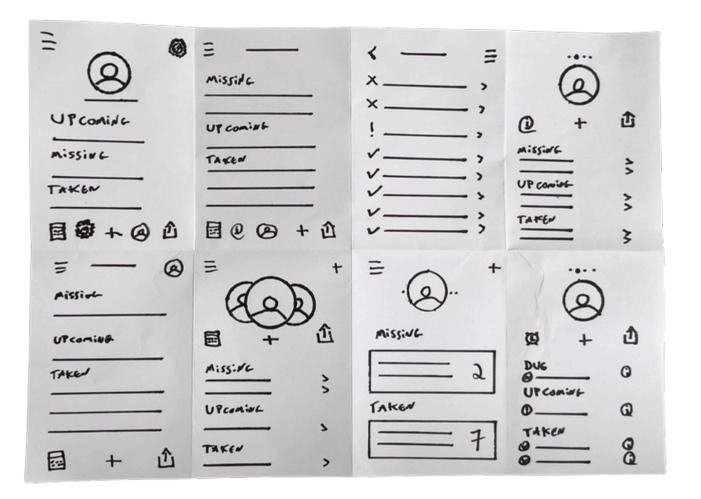
The audition compared 4 direct and 2 indirect competitors app's main features, how good or bad they work, how information is distributed across the app, how easy the navigation is and how the companies position themselves in the market. The results gave input to establish the value proposition and work in a solution.

^{*}Examples of the main competitors' first impressions

What are the gaps left by the competitors?

Most of the competitors hide such an important feature as a reminder under settings menu, and the sharing capabilities are very limited, with only one competitor allowing sharing with doctors.

*Main competitors' apps' menu

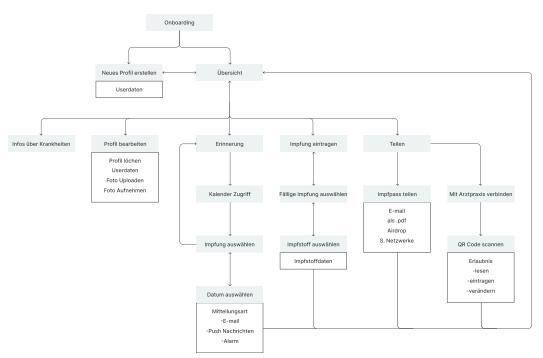

The main features, which would address the users' most critical pain points, were not as visible as they could be. Some menus showed features that could accessed though a different path while others were missing relevant ones. Not a single one offered all the solutions within the same product.

And how Impfdate distinguishes itself from the competition?

The value proposition of the app is to offer all immunization records in digital format, while allowing clear current immunization status overview, in advance-notifications about upcoming vaccines synchronized with the user's default calendar app, record's input editing and sharing between parents and trusted healthcare professionals, and simplified information about vaccines and the diseases they prevent.

Time to brainstorm ideas

Starting with paper sketches to generate the first ideas as quickly as possible. The focus was on the 3 main features (record input, setting reminders and sharing) and the overview screen of the user's immunization status. The next step was to puzzle together the favorite pieces of each sketch.

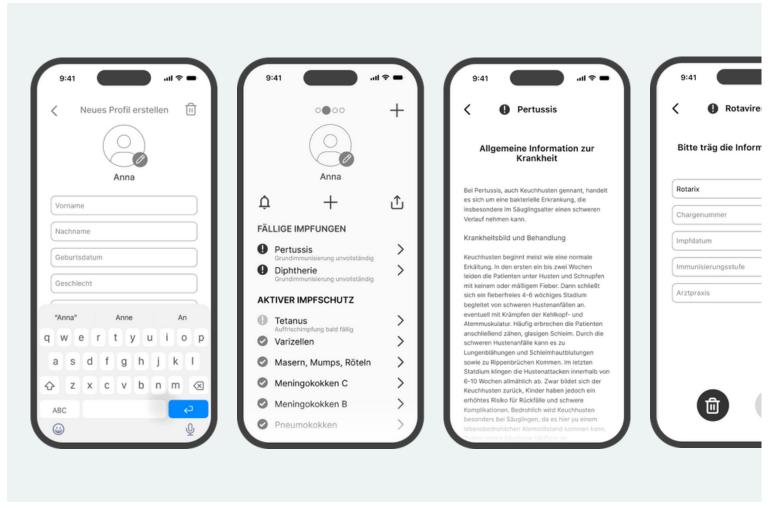

^{*}Applying the crazy 8 technique to come up with ideas fast

Before moving from paper to the screen

The information distribution and screen flow are key when creating an intuitive app. The user journey maps served as a guide to trace the easiest path towards the users' goal.

Tracing the 'happy path'

The clearest path was designed so that every main feature should be accessible from the main screen and only necessary information should be displayed. From there, secondary actions were disposed in a thoughtful matter not to make the main screen too busy. The information architecture was shaped considering these principles.



^{*}The information architecture prioritized ease of navigation by using familiar design conventions.

From paper to the screen

The first wireframes for a basic navigation and feature testing were drawn using Figma and enabled the first usability test. A moderated test conducted with volunteers tested the 3 main features: entering vaccines, setting reminders and sharing.

Time on task and drop-off rates vs. conversion rates served as metrics to determine the success of the prototype

^{*}Check <u>here</u> the test prototype

What did the results show?

After testing the 3 main features (entering vaccine record, setting reminder and sharing the records), the 3 users had time to give their feedback concerning their experience with the app, positives, negatives and suggest improvements.

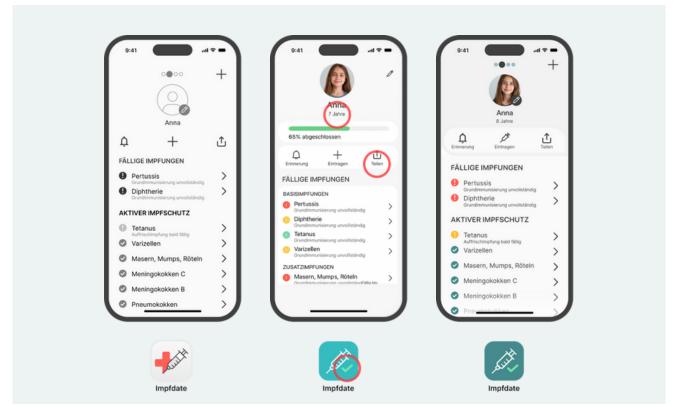
ENTERING VACCINE	SETTING REMINDER	SHARING RECORDS
33% completed the task	100% completed the task	100% completed the task
in 1:33min	in 0:21min	in 0:11min

average time

Learnings from the test results

average time

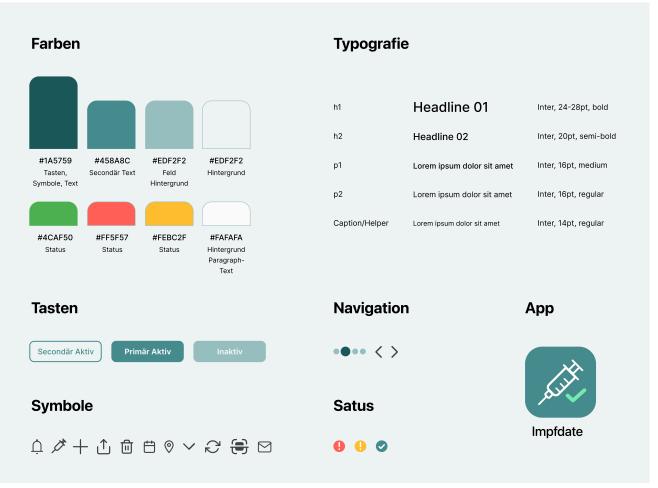
average time


Not all button functions were clear due to the lack of of labeling and buttons with different actions having the same shape (the 'plus' icon had the same shape as the one for creating a new profile, which caused confusion), resulting in increased time on task, specially for inserting new records.

Users reported that the child's age is crucial information for quick assessment by doctors, so it should be displayed visibly.

Using A.I. as a tool

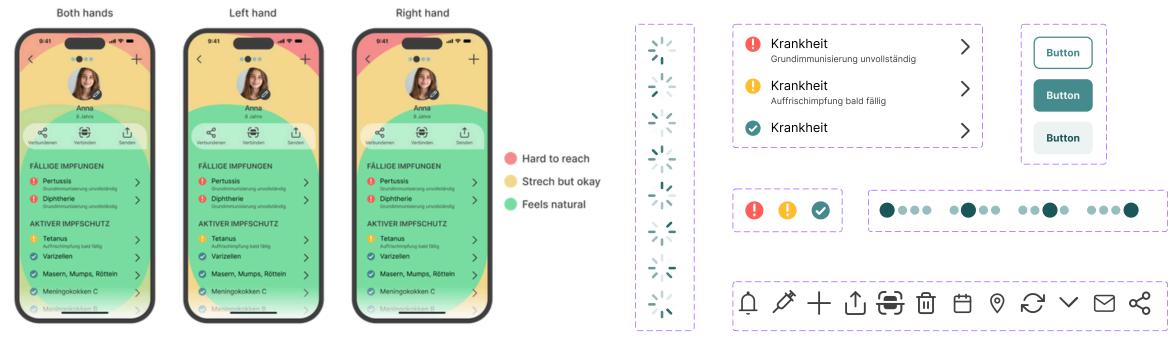
In order to optimize the workflow, A.I. was used, at different stages of the project, **not to create** content, but as a tool to sort data and enhance solutions with prompts based on user testing feedback.


The prompt asked for visual hierarchy improvement, button labeling and age being displayed in the profile. A first sketch of the app's icon was also subject of A.I. enhancements. The output was obviously analyzed and altered so that it would fit the user needs.

^{*}UI design iterations with A.I. as a tool.

Working on a design system

The app design incorporates a softer green palette to transmit trust and protection. Additional colors serve as visual cues for alerts or to improve legibility by giving WCAG compliant contrast to text, buttons and icons. The font choice of sans serif gives a friendly and approachable feel, distancing itself from typical serif font for long and technical text.

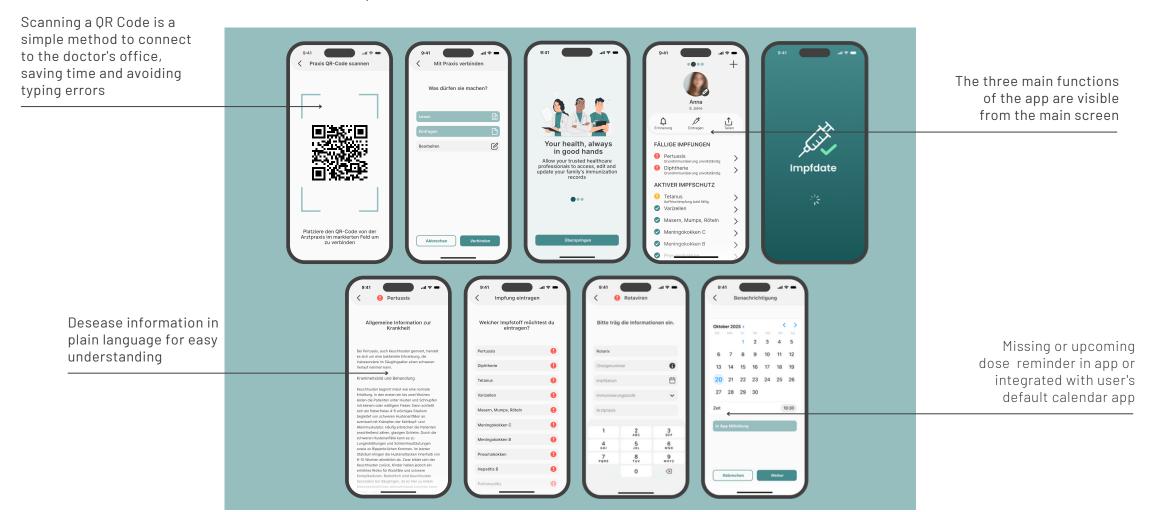


^{*}The color pallets, types and icons create the visual identity of the app.

Working on the UI

The actions and information were distributed through the screen considering the thumb reach zone, placing the most important clickable actions were the reach feels natural.

Auto-layout, components, variants and tokens were used in Figma to allow the app to be responsive, scalable and consistent throughout the screens.



^{*}The thumb zones for the mobile app

^{*}These were the components created in Figma for the app

Testing the prototype

After finishing the mockups, a new prototype was created and tested. Focusing on four functions of the app (entering records, reminders setting, sharing with others and reading disease description), the moderated usability study asked 3 participants to evaluate the experience and perform 4 tasks, evaluated the results and iterated the design based on the same time on task and drop-off rates vs. conversion rates KPIs.

*Click <u>here</u> to test the prototype

Combining results with observations

Adding labeling helped better identifying the individual functions with 100% conversion rates. The time on task couldn't be compared with the first test because additional steps were added to the features, but the observations of how users interacted with the product revealed, that 66% tried to enter a record through the disease card, which points that it would make sense to include this path to access the feature.

The share and send buttons could also open a path to connect with the doctor's office, so users didn't need to go back one step to do so. Not every user navigates equally, so offering alternative paths make sense.

ENTERING VACCINE

100%

completed the task

in 0:32min

average time

100% completed the task

SETTING REMINDER

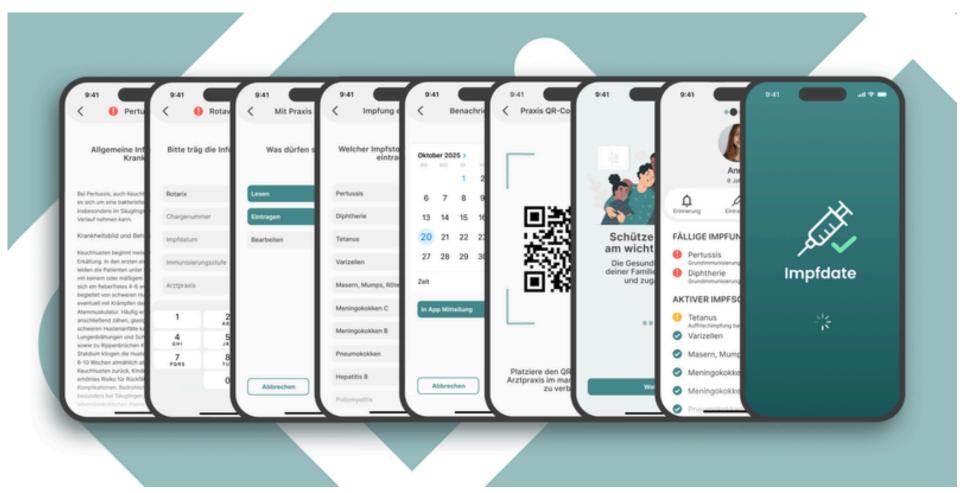
in 0:34min average time

SHARING RECORDS

100% completed the task

in 0:28min average time

DISEASE DESCRIPTION


100% completed the task

in 0:12min average time

^{*}These were the results from the second usability test $% \left(1,0,0,0\right) =\left(1,0,0\right)$

Presenting the solution

After the iteration from the second test, the final prototype has the basic structure of an App with onboarding screens, overview and functions integrated with built-in and third-party apps from the phone, such as calendar, printer and social media. The prototype doesn't require user registration or has any commercial purpose yet due to it simply being a private portfolio project focused exclusively on the user's pain points.


*Click here to check the prototype file

Considerations and next steps going forward

Users' feedback and observing how they interact with the product during tests brought new insights that couldn't be achieved only through the interviews, and allowed the app experience to become more fluid. It was interesting to observe how users navigate differently while trying to complete the same tasks.

There are still many opportunities to explore within the app, such as adding images to the disease description to illustrate symptoms, multiple language support, UI hierarchy improvement, and adding micro-interactions and animations to make the experience more pleasant.

There could also be created the practitioner's version of the app, with expanded capabilities to manage multiple patiences' profiles, remote synchronization and appointment suggestions. But that doesn't make sense yet as the project is just conceptual.

